The aim of this investigation is to find the various measurements of concentration (Also called the morality) of acid that will neutralise 1 mole of sodium hydroxide. This is found using the titration method.


I predict that the volume of acid that will be used to neutralise the given solution would depend on the concentration. The more acid I add to an alkali, the more neutral it will become. If I add too much acid, the solution will not neutralise, so therefor it will turn to an acidic solution.

This happens in all scientific experiments.


1x conical flask

1x burette

1x clamp stand

1x 50ml bottle of universal indicator (any amount as long as it can do 40 drops)

1x solution 1 – HCI (Hydrochloric acid)

1x solution 2 – H2SO4 (Sulphuric acid)

1x solution 3 – HNO3 (Nitric acid)

1x White tile

1x measuring cylinder

1x funnel

1x safety glasses


Safety with apparatus

* Do not shake the conical flask too vigorously or the solution will spill.

Get quality help now
Bella Hamilton
Verified writer

Proficient in: Chemistry

5 (234)

“ Very organized ,I enjoyed and Loved every bit of our professional interaction ”

+84 relevant experts are online
Hire writer

* Always be prepared for a spill.

* Make sure that the burette is closed when not in use.

* Do not fill the burette right to the top.

* Make sure the clamp stand is held tightly by your partner.

* Make sure the burette is held tightly by the clamp stand.

* Make sure the solution are put in a safe place and is not put on the edge of the table.

Get to Know The Price Estimate For Your Paper
Number of pages
Email Invalid email

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email

"You must agree to out terms of services and privacy policy"
Check writers' offers

You won’t be charged yet!

* Make sure every solution, liquid, etc, solutions are put in a safe place and is not put on the edge of the table.


Fair test and accuracy

> When reading, eye must be level with meniscus to read the burette.

> We will also wash all equipment when doing the other solutions. This is due to the different solutions mixing, so they give a different compound. We wash these in water because when you mix an acid or alkali with water, the pH level will not change since water is neutral. If we did not use water or anything neutral, then we will be changing the solution and this factor can give us inaccurate results.



1. Collect equipment

2. Make sure there are no safety hazards in their way.

3. Pour solution 1(HCI- Hydrochloric acid) into the burette up to 0 ml on the visual measurement reading on the burette.

4. Add 25 ml of sodium hydroxide into a flask.

5. Add 10 drops of Universal indicator solution into the sodium hydroxide using a dropper.

6. Open the tap and run the acid, from the burette drop by drop.

7. Wait until the conical flask has turn Green (neutral, The end point, which happens when the titrant and the amount of stuff being titrated is equal), while dropping the solution.

8. Note the reading down and then repeat the process with each solution.


The volume of acid is measured in ml. We will take measurements of the compound of the ending product in the conical flask. In addition, we will measure how much solution is left in the burette.

To help with accuracy we will do two tests for each solution so that we can get a more accurate result.


All this research are secondary sources and were found in books, Internet, etc.

To analyse, we mean in chemistry, to separate something into its component parts in order to learn more about the nature of these components.

Sometimes we need to know only which substances are present in a solution. E.G., which elements are present in a sample?

To find the answers to these questions we use qualitative analysis. If we need to now the precise quantity of one or more of its components we use quantitative analysis. This might entail finding the percentage of nickel ore or the number of parts per million of mercury in a fish. Qualitative analysis can be done by means of volumetric analysis, in which reactions take place inside the solution.

Volumetric analysis is a means of finding out the concentration of a solution. He method is to add a base in a careful way until there is enough acid to neutralise the base. This method is called titration. In a titration, method, the titrant, is added to another slowly. As it is added, a chemical reaction occurs until one of the solutions in the compound is exhausted. This experiment is an acid based titration.

The concentration of one of the two substances must be known so that you can calculate the other concentration.

All acid based titration reactions are simple exchanges of protons.

How to work out the concentration of any solution?


A solution of hydrochloric acid it titrated against a standard sodium hydroxide solution. What is the concentration of hydrochloric acid?


1. Write out the equation.

Hydrochloric acid + sodium hydroxide –> sodium chloride + water

HCI (aq) + NaOH (aq) –> NaCL (aq) + H2O (I)

This equation tells you that 1 mole of HCI neutralises 1 mole of NaOH.

2. Work out the amount of moles of the base.

Amount (mol) = Volume (I) x concentration (mol/l)

Amount (mol) of NaOH = volume (25.0cm3) x concentration (0.100 mol/l)

= 25 x 10-3 x 0.100 mol/l = 2.50 x 10-3 mol

3. Now work out the concentration of acid

Amount (mol) of HCI = Amount (mol) of NaOH = 2.5 10-3 mol


Amount (mol) of HCI = volume of HCI (aq) x concentration of HCI (aq)

Therefor, if C = concentration of HCI

2.50 x 10-3 mol = 15.0 x 10-3 x c

C = 2.5 x 10 -3 mol

15.0 x 10-3

= 0.167 mol/l

Calculations for the real results.

Solution 1 – NaOH & HCI titration

1. Equation for the reaction

Hydrochloric acid + Sodium hydroxide –> sodium chloride + water

HCI (aq) + NaOH (aq) –> NaCL (aq) + h20 (1)

From the above equation, we can say 1 mole of HCI neutralises 1 mole of NaOH.

2. Amount in moles of NaOH

Amount (mol) = volume (I) x concentration (mol/l)

Amount of (mol) of NaOH = 25.0 cm3 x 1.0 mol/l

= 25/1000 1 x 1.0 mol/l

= 0.025 mol

3. Concentration of HCI

Amount (mol) of HCI = Amount (mol) of NaOH

= 0.025 mol


Amount (mol) of HCI = Volume (mol) of HCI (aq) x concentration of HCI (aq)

= 12.5/ 1000 I x C


12.5/1000 I x c = o.o25 mol

C= 0.025/12.5 x 1000 mol/l

= 2.0 mol/l

=2.0 m

Solution 2 – NaOH & H2SO4 titration

1. Equation for the reaction

Sulphuric acid + Sodium hydroxide –> sodium chloride + water

H2S04 (aq) + 2NaOH (aq) –> NaCL (aq) + h20 (1)

From the above equation, we can say 1 mole of H2SO4 neutralises 2 moles of NaOH.

2. Amount of moles in NaOH

Amount in (mol) = volume (1) x concentration (mol/l)

Amount (mol) of NaOH = 25.0 cm3 x 1.0 mol/l

= 25/1000 x 1.0 mol/l


3. Concentration of H2SO4

Amount (mol) of NaOH = 2 x amount (mol) of H2SO4

Amount (mol) of NaOH = 25.03 x 1.0 mol/l

= 25/1000 x1.0 mol/l

= 0.025 mol


2 x Amount (mol) of H2SO4 = 2 x Volume of H2SO4 (aq) x Concentration of H2SO4

= 2 x 12.4/1000 x C


2 x 12.4/ 1000 x c = 0.025 mol

C = 0.025 / 24.8 x 1000 mol/l

= 1.01 mol/l

= 1.0 m

Solution 3 – NaOH & HNO3

1. Equation of the reaction

Nitric acid + sodium hydroxide –> sodium nitrate + water

HNO3 (aq) –> NaNO3 (aq) + H2O

From this equation you can tell that 1 mole of HNO3 neutralises 1 mole of NaOH.

2. Amount in moles of NaOH

Amount in (mol) = volume (1) x concentration (mol/l)

Amount of NaOH = 25.0 cm3 x 1.0 (mol/l)

=25/1000 x 1.0 mol/l

=25/1000 x 1.0 mol/l

=0.025 mol

3. Concentration of HNO3

Amount (mol) of HNO3 = Amount (mol) of NaOH

= 0.025 mol


25.0/1000 x C = 0.025 mol

C = 0.025/25 mol x 1000

C= 1.00 mol/l

C = 1 mol


I have found that: –

Hydrochloric acid- 2.00mol/l (2 m)

Sulphuric acid- 1.00 mol/l ( 1m)

Nitric acid- 1.00 mol/l (1m)


Due too accurate and the amount of tests, I say that these results are quite accurate. The main concern about the experiment was spillage. If anything had spilt, then it would had changed the readings. In addition, I was concerned about the idiotic behaviour of some pupils that felt that they could add more drops of a solution to the sodium hydroxide.

To improve this experiment I would get a more controlled environment and also tried other acids and bases.

Research 2

Sulphuric acid

Sulphuric acid is a corrosive, oily, colourless liquid. It melts at 10.36�C. It boils at 340�C. It is soluble and when mixed with water, considerable amount of heat is released.

Nitric acid

Nitric acid is a colourless corrosive liquid that melts at -42�C and boils at 83�C.

Cite this page

Volumetric Analysis. (2020, Jun 02). Retrieved from

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment