Now Accepting Apple Pay

Apple Pay is the easiest and most secure way to pay on StudyMoose in Safari.

How Does Green Chemistry Techniques Improve Organic Synthesis


The aim of green chemistry is not only to reduce the hazardous substances and eliminate destructive environmental impact, it also aims to search for new, improve and efficient methods for chemical synthesis. The green chemistry techniques that are discussed in this research paper are: Sonochemistry, microwave-assisted in organic synthesis, solvent-free in organic synthesis, and alternative solvents. Green chemistry techniques improve organic synthesis by yield, purity and reduce the reaction time. It also enhances the organic synthesis by maximizing the incorporation of all reactants, the creation of non-toxic products, and it is easily controlled.


Green Chemistry is the invention, design, and application of chemical products and processes to reduce or to eliminate the use and generation of hazardous substances.

The aim of green chemistry is not only to reduce hazardous substances and eliminate destructive environmental impact; it also aims to search for new, improve and efficient methods for chemical synthesis.2 It is important to use green chemistry techniques because it is easily controlled and efficient for chemical synthesis to use and produce non-hazardous substances; most importantly waste prevention is better than treatment.

Get quality help now
Verified writer

Proficient in: Chemistry

4.7 (348)

“ Amazing as always, gave her a week to finish a big assignment and came through way ahead of time. ”

+84 relevant experts are online
Hire writer

1 The green chemistry techniques that are discussed in this research paper are sonochemistry, microwave-assisted in organic synthesis, solvent-free in organic synthesis, and alternative solvents such as water and ionic liquids.

These green chemistry techniques that are discussed in this paper have the ability to improve organic synthesis. Sonochemistry, microwave chemistry, solvent-free reactions and green solvents are classified as green chemistry techniques because of their properties and eco-friendly use.

Get to Know The Price Estimate For Your Paper
Number of pages
Email Invalid email

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email

"You must agree to out terms of services and privacy policy"
Check writers' offers

You won’t be charged yet!

Why do we need to improve organic synthesis? Organic synthesis needs to be improved because the synthetic steps are long and tedious, and the solvents used are very dangerous to human health and the environment; thus, harmful by-products are produced. The solution to these problems is to go green by using green chemistry techniques. Green chemistry techniques improve organic synthesis by yield, purity and reduce the reaction time and by-products. In the past, green chemists used traditional heating to solve these problems, but current research studies have shown that these green chemistry techniques are more efficient and reliable. Some of these improvements may overlap, but each technique has their own unique ways to improve organic synthesis. The goal of this research paper is to determine how these types of techniques improve organic synthesis.

Sonochemistry in Organic Synthesis

Over the years, chemists have advanced their method of chemical synthesis such as the use of ultrasound that is currently developing. Sonochemistry is classified as green chemistry technique because this type of method illustrates the mildness and non-hazardous features of sound waves. Sonochemistry is the effect of sound waves on chemical reactions.1 Ultrasound in chemistry generates a series of compression and rarefaction waves that induce in molecules. According to the Handbook of Green Chemistry & Technology, it states that any sound frequency that can generate cavitation in a liquid can be used in sonochemistry. Cavitation is the formation of gas bubbles in a liquid. The most common frequency used for this method is between 20 kHz and 40 kHz. The instrument used in sonochemistry is called a transducer. The transducer is a device that converts mechanical and electric sound waves to sound energy.

This method improves chemical synthesis by providing energy to a reaction with and without the use of solvents.3 The energy that is delivered in the synthesis is constant, hence it is conservative. The sound waves that are used in this method have been proved that it lowers the temperature and reaction time in a reaction. It also improves the chemical synthesis because the sound waves do not alter the rotational and vibrational state of a molecule.1 This method is also known to synthesize nanomaterials.

Sonochemistry is currently attracting the synthetic chemist community because it offers a new approach to the preparation of organic compounds. Comparing to the traditional method of organic synthesis, sonochemistry is more convenient and easily controlled. The example below illustrates a chemical synthesis reaction via sonification. Leite stated that thiosemicarbazone derivatives synthesized under reflux conditions in organic solvents required more time. But this method (sonification) in water requires less time and produces more yield than the traditional method.

Microwave-assisted Organic Synthesis

Microwave-assisted organic synthesis is a green chemistry technique that uses microwave radiation to synthesize chemical reactions.7 The first use of the microwave for organic synthesis was done by Gedye and Giguere in 1986. Microwave is form of electromagnetic energy that has a wavelength of 1 cm to 1 m with a frequency of 30 GHz and 300 MHz.8 This technique is used as a source of heating for organic synthesis. How does microwave heating works? The microwave heating uses the ability of some liquid and solid to transform electromagnetic radiation into heat to drive chemical reactions.

This method is termed as a green chemistry technique because the use of solvent is not mandatory to transport heat and it provides a new approach in organic synthesis that is eco-friendly. The energy that the microwave produce is not as strong as the energy required to break the chemical bonds. As a result of this, the microwave does not change the structure of the molecule. Many research paper states that microwave-assisted organic synthesis makes difficult reactions possible.11

Green chemistry techniques are widely known for their reduction of reaction time and increase in product yield. Comparing to the different green chemistry techniques, what is special about microwave chemistry that improves the organic synthesis? Microwave-assisted organic synthesis improves the organic synthesis by purifying the product to reducing side reactions compared to the conventional heating method.10 The conventional heating method is also called traditional heating. The difference between microwave and traditional heating is that during conventional heating, the heat is transfer from the external source to the molecules. In the microwave method, the heat goes directly to the molecules, and it does not depend on the thermal conductivity of the external source.10 That is, conventional heating is inconsistent because the temperature varies, and uniform heating occurs in the microwave because there is no contact with the source. Microwave heating is more effective than traditional heating because the energy consumption is less.

Microwave heating is easily controlled because the energy input to the sample starts and stops immediately when the power is turn on or off.1 This prevents overheating of the reactants that may result in the decomposition of products. Microwave heating enhances the organic synthesis because it has a high selectivity that reduces the threat of explosions. An example is reaction of metal sulfide. Metal sulfide under conventional heating takes a very long time because the sulfur vapors cause explosions. However, this same reaction under microwave heating is carried out faster without the threat of explosion because the sulfur is transparent to microwave heating and only the metal gets heated.11

Microwave also improves the organic synthesis by increasing the rate of reaction. Grangrade et al. states that microwaves transfer energy in 10-9 seconds while the kinetic molecular relaxation will take 10-5 seconds. This means that energy transfer is faster than molecular relaxation which helps to create high instantaneous temperatures that influence the kinetic of reaction. Because of this, it helps to increase the rate of reaction in less time with greater product yield. Microwave provides product yield between the ranges of 80-100% and conventional product yield between the ranges of 40-50%. For example, if a reaction is done under conventional heating, it could take 8-10 hours for it to complete at a low yield. In contrast, this same reaction could complete in 2-10 minutes under microwave heating. It also produces higher yield.

Solvent-free in Organic Synthesis

The belief that no reaction is possible without the use of solvent is no longer valid. Solvent-free improves the organic synthesis by increasing the reaction rate due to more availability of reactants.mIt has been found that many reactions work efficiently in a solid-state. This means that the reactants can move freely in a solid-state.

The products of solvent-free reaction and solvent reactions are different. This is because of the packing of the reactants in the crystalline state. This enhances the organic synthesis because the crystalline state achieves a high degree of stereoselectivity in the products. The product is sufficiently pure that there is no need for recrystallization. The solvent-free reactions can also be carried out by the assistance of ultrasound and microwave techniques.

Green Solvents in Organic Synthesis

One of the twelve green chemistry principles states that it is best to use safer solvents. Solvent is any substance that dissolves another substance that results in a homogeneous mixture. The demand for green solvents in chemistry is increasing because of the properties of the environmental impact and improvement in chemical synthesis. When choosing an alternative green solvent, it is best to choose one that has low toxicity and does not contaminate the product.

This is one of the reasons why it is best to use green solvents so that it reduces the explosivity and flammability. Apart from microwave-assisted organic synthesis, using a green solvent improve the organic synthesis by reducing the impurities in a compound. Examples of green solvents that are discussed in this paper are water and ionic liquids.

Water as a Solvent

Green synthetic chemist believes that the best solvent is no solvent but what if a compound needs to be diluted? If a diluent is needed, then the organic solvents can be replaced by water. Water as a solvent is a green chemistry technique because it substitutes the use of volatile, flammable and expensive solvents. Water improves organic synthesis because of its chemical properties. Water has an amphoteric nature that influences the reactivity and selectivity of chemical reactions. 2 Also, water can form strong hydrogen bonds.

Ionic Liquids as a Solvent

Some compounds may have a low solubility in water, therefore ionic liquid is useful for organic synthesis as an alternative solvent. Ionic liquids are green chemistry technique used to improve organic synthesis because it has no vapor pressure nor causes emission to the atmosphere. What are Ionic Liquids? Ionic liquids are salt composed of ions that have a low boiling point and high thermal stability.  Because the liquids are made up of more ions rather than molecules the reaction give a unique selectivity and reactivity when compared with conventional organic solvents. It improves organic synthesis because of its ability to act as a catalyst. The ionic liquids may be recycled and used for further reductions.


The US Green Chemistry Institute (GCI) is dedicated to encouraging environmentally benign chemical synthesis and promoting research and education.1 Green chemistry plays a fundamental role in society by designing compounds that have minimal impact to the environment and improves organic synthesis. It improves the organic synthesis by maximizing the incorporation of all reactants, the creation of non-toxic products, and it is easily controlled. Further researches that can be done are: to determine if ketone /alcohol mix can be produced to avoid inherent hazards that are involved with oxidation and to determine the alternative step for nitric acid oxidation. In the short-term future, we are likely to see significant reductions in the use of hazardous volatile organic solvents through increase use of alternatives and more widespread use of microwave and ultrasound in organic synthesis to reduce waste and energy.


  • ADDIN EN.REFLIST Clark, J., The Handbook of Green Chemistry & Technology Blackwell Science Ltd: London, UK, 2002; p 372-398.Asha D. Jangale & Dipak S. Dalal. Green synthetic approaches for biologically relevant organic compounds, Synthetic Communications, 2017,47:23, 2139-2173, DOI: 10.1080/00397911.2017.1369544
  • Cintas, P. and J.-L. Luche (1999). “Green chemistry. The sonochemical approach.” Green Chemistry 1(3): 115-125.
  • Mason, T. J. Ultrasound in synthetic organic chemistry. Chemical Society Reviews 1997, 26 (6), 443.
  • Suslick, K. S. Ultrasound in synthesis. Modern Synthetic Methods Modern Synthetic Methods 1986, 4, 3-11.
  • Leite, A. C. L.; Moreira, D. R. M.; Coelho, L. C. D.; Menezes, F. D.; Brondani, D. J.
  • Synthesis of Aryl-Hydrazones Via Ultrasound Irradiation in Aqueous Medium. Tetrahedron Lett. 2008, 49, 1538-1541
  • Belwal, Green revolution in chemistry by microwave-assisted synthesis: S. Modern Chemistry 2013, 1 (3), 22.
  • Developments in Microwave Chemistry (2005) Royal Society of Chemistry, Evalueserve, London, UK.
  •  Ravichandran, S.; Karthikeyan, E. International Journal of ChemTech Research 2011, 3.
  • Gangrade, D.; Lad, S.; Mehta, A. International Journal of Research in Pharmacy and Science 2015, 5, 37-42.
  • Ameta, S. (Ed.), Punjabi, P. (Ed.), Ameta, R. (Ed.), Ameta, C. (Ed.). (2014). Microwave-Assisted Organic Synthesis. New York: Apple Academic Press, F.; Ma, N.; Zhou, D.; Zhang, G.; Chen, R.; Zhang, Y.; Tu, S. Green Approach to the Synthesis of Polyfunctionalized Pyrazolo[4?,3?:5,6]Pyrido[2,3-d]Pyrimidines Via Microwave-Assisted Multicomponent Reactions in Water Without Catalyst. Syn. Commun. 2010, 40,135-143.
  •  Marvaniya, H.; Modi, K.; Sen, D. Greener reaction under solvent-free condition. ChemInform 2012, 43.
  • G. Bellachioma, L. Castrica, F. Fringuelli, F. Pizzo and L. Vaccaro, Green Chem., 2008, 10, 327.
  • Toda, F. Tanaka, K. Chem Rev. 2000, 100, 1025
  • Akbaslar, D.; Demirkol, O.; Giray, S. Paal Knorr Pyrrole Synthesis in Water. Syn. Commun. 2014, 44, 1323-1332
  •  Cull, S.; Holbrey, J.; Vargas?Mora, V.; Seddon, K.; Lye, G. Biotechnology and Bioengineering 2000, 69, 227-233.
  • Saleh, S.; Fayad, E.; Azouri, M.; Hierso, J.-C.; Andrieu, J.; Picquet, M. Donor-Stabilized Phosphenium Adducts as New Efficient and Immobilizing Ligands in Palladium-Catalyzed Alkynylation and Platinum-Catalyzed Hydrogenation in Ionic Liquids. Adv. Synth. Catal. 2009, 351, 1621-1628;

Cite this page

How Does Green Chemistry Techniques Improve Organic Synthesis. (2019, Nov 21). Retrieved from

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment