Nervous and Endocrine Systems: Harmony in Homeostasis Regulation

Categories: HumanSteroids

An overview of the nervous and endocrine systems, their functions and how together they regulate homeostasis

The endocrine system is the internal system of the body that deals with chemical communication by means of hormones, the ductless glands that secrete the hormones, and those target cells that respond to hormones. The endocrine system functions in maintaining the basic functions of the body ranging from metabolism to growth. The endocrine system functions in long term behavior and works in conjunction with the nervous system in regulating internal functions and maintaining homeostasis.

Hormones are the chemical messengers released by specialized endocrine cells or specialized nerve cells called neurosecretory cells. Hormones are released by the endocrine system glands into the body’s fluids, most often into the blood and transported throughout the body. Hormones are specified by their different chemical structures which can be classified into four categories.

  • Amines: are small molecules originating from amino acids.
  • Prostaglandins: are cyclic unsaturated hydroxy fatty acids synthesized in membranes from 20 carbon fatty acid chains.
  • Steroid hormones: are cyclic hydrocarbon derivatives synthesized in all instances from the precursor steroid cholesterol.
  • Peptide and Protein hormones: are the largest and most complex hormone.

Hormones drive the endocrine system and without them the body could not function.

Get quality help now
Doctor Jennifer
Doctor Jennifer
checked Verified writer

Proficient in: Human

star star star star 5 (893)

“ Thank you so much for accepting my assignment the night before it was due. I look forward to working with you moving forward ”

avatar avatar avatar
+84 relevant experts are online
Hire writer

Hormones are the communicators of the endocrine system and are responsible for maintaining and controlling cellular activity. Hormones regulate bodily functions and are specific in what responses they elicit. As hormones are released into the bloodstream they can only initiate responses in target cells, which are specifically equipped to respond.

Get to Know The Price Estimate For Your Paper
Topic
Number of pages
Email Invalid email

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email

"You must agree to out terms of services and privacy policy"
Write my paper

You won’t be charged yet!

Each hormone due to its chemical structure is recognized by those target cells with receptors compatible with their structure. Once a hormone is released, the first step is the specific binding of the chemical signal to a hormone receptor, a protein within the target cell or built into the plasma membrane. The receptor molecule is essential to a hormones function.

The receptor molecule translates the hormone and enables the target cell to respond to the hormones chemical signal. The meeting of the hormone with the receptor cell initiates responses from the target cell. These responses vary according to target cell and lipid solubility. Hormones are either lipid-soluble or lipid-insoluble, depending on their biochemical structure. The lipid solubility of the hormone determines the mechanism by which it can affect its target cell. Lipid-soluble hormones are able to penetrate through the cell membrane and bind to receptors located inside the cell. Such hormones diffuse across the plasma membrane and target those receptor cells found within the cytoplasm. Lipid-soluble hormones target the cytoplasmic receptors which readily diffuse into the nucleus and act on the DNA, inhibiting and stimulating certain proteins. DNA function is of great influence over the cellular activities of the body and therefore such hormonal-DNA interaction can have effects as long as hours and in some cases days.

Two known types of lipid soluble hormones are steroids and thyroid hormones. Both travel over long courses of time via the bloodstream and both directly effect DNA functions. Those hormones which are lipid-insoluble are unable to penetrate through the plasma membrane and function with their target cells in a much different and complex manner. Lipid-insoluble hormones must bind with cell-surface receptors which follow a different path involving a second messenger. The hormone's inability to penetrate the membrane requires a second messenger which translates the outer message and functions within the cell. Once a lipid-insoluble hormone binds with a cell surface receptor, its’ signal is translated into the cell by specific secondary messengers. There are three known and accepted secondary messengers which vary in structure and function, but all three carry out the external signal internally. The three known secondary messengers are (1) cyclic nucleotide compounds (cNMPs), cAMP, and cGMP; (2) inositol phospholipids; and (3) Ca2+ ions. After a hormone binds with a receptor molecule it via a transducer protein sends the hormones signal through the membrane. The protein receptor initiates the formation of a second messenger, whether it be it be cAMP or an inositol phospholipid, which then binds to an internal regulator.

The internal regulator controls the target cells’ response to the hormone's signal. Each different type of secondary messenger evokes different responses by those cells they affect. cAMP has wide range of tissues it targets and those responses it elicits. cAMP pathways can increase the heart rate and force a contraction in a heart, it can decrease lipid breakdown in fat cells, and it can stimulate reabsorption of water in a kidney. An inositol phospholipid pathway can initiate breakdown of liver glycogen and DNA synthesis in fibroblasts. Ca2+ pathways are linked to initiating responses in striated muscles most notably contraction. These responses, however, are short lived responses; much shorter than those by lipid soluble affected cells. Although the cellular mechanisms of hormones vary according to solubility and first and second messengers, such hormones function in eliciting responses from their target cells. Hormones more or less function as a stimulant, promoting an action in a target cell which can be magnified in stimulating organs or even systems. Hormone stimulation varies from growth and metabolic functions to ova and sperm production. There are two ways in which the endocrine system affects the rest of the organism.

The first method of transmission, is called local signaling. This is when regulators are released by a gland or cell into the interstitial fluids and are absorbed by nearby cells. The second method of transmission is called long distance signaling. Long distance signaling takes place when an endocrine cell or neurosecretory cell releases hormones into the bloodstream. Once in the bloodstream the hormones travel to the receptor cell. When they reach their destination the receptor cell integrates the signal and reacts to its design. Growth factors affect the development of new cells. There are specific hormones that correspond with the development of specific cells. For example, epidermal growth factor is required to grow epithelial cells. The rate of growth can also be affected, for example an experiment on fetal mice was done to see if rate of growth of skin would change with an influx of hormones. It was found that by injecting the fetal mice with EGF that skin developed faster. The hypothalamus and pituitary gland are two parts of the brain that have important roles in integrating the nervous and endocrine system.

The hypothalamus is found in the lower part of the brain in the midbrain where it functions in receiving messages from nerves and integrating that into endocrine gland responses. The hypothalamus is more or less the communication link between the nervous system and the endocrine system. The hypothalamus regulates the secretion of various hormones by controlling the main hormonal gland the pituitary gland.

The pituitary gland releases hormones that control many of the endocrine system's functions. The pituitary gland releases hormones when signaled by the hypothalamus. The pituitary gland has numerous functions which are performed by its’ two parts. Pituitary’s two separate parts are essential to the production of many hormones but, their function in relation to the hypothalamus and endocrine system vary greatly. The posterior pituitary is an extension of the brain and secretes two types of hormones, oxytocin and antidiuretic hormone (ADH), both of which are produced by the hypothalamus and released into the posterior pituitary. Neurosecretory cells in the hypothalamus produce oxytocin and ADH and are transported down an axon to the posterior pituitary where it is stored. The posterior pituitary releases these hormones when needed via the bloodstream and bind to their target cells. The posterior pituitaries hormones elicit specific responses from the kidneys, by means of ADH, and the mammary glands, by means of oxytocin.

ADH acts directly on the ability of the kidneys to reabsorb water, whereas oxytocin causes mammary glands to release milk. The anterior pituitary also relies on the hypothalamus to control and regulate its hormonal release, but in a less direct manner. The release of hormones by the anterior pituitary is driven by neurosecretory cells located in the hypothalamus. When the hypothalamus receives a signal for the need of a hormone produced by the anterior pituitary, it sends releasing hormones through short portal vessels and into a second capillary network within the anterior pituitary, where it acts on a specific hormone. Besides releasing stimulatory hormones the hypothalamus also releases inhibiting hormones which prevent the release of certain hormones from the anterior pituitary. The anterior pituitary produces and releases several different hormones with many different functions. Its hormones range from growth hormones that act on bones, to prolactin which stimulates mammary glands. A unique function of those hormones released by the anterior posterior, is that some of them act on other endocrine glands and signal them to produce and release other hormones. Tropic hormones are responsible for this, such as thyroid stimulating hormone which stimulates the thyroid and its production of hormones.

Pheromones are chemical signals that function as external communicators whereas hormones are internal. Pheromones communicate between separate individuals, not within one individual as hormones do. Pheromones are communicating chemicals that act between animals of the same species. Pheromones are dispersed into the environment and are used in attraction, defense, and marking territories. Pheromones play a great role in the insect world, but their importance in human interaction is disputed. Some scientist question the presence of chemical influence on human behavior while an entire industry, the fragrance industry, bases its existence on the appreciation for external scents. Pheromones most likely play a hidden role in the interaction of humans with each other. The nervous and endocrine systems are related in three main areas, structure, chemical, and function. The endocrine and nervous system work parallel with each other and in conjunction function in maintaining homeostasis, development and reproduction.

Both systems are the communication links of the body and aid the body’s life systems to function correctly and in relation to each other. Structurally many of the endocrine systems glands and tissues are rooted in the nervous system, Such glands as the hypothalamus and posterior pituitary are examples of nerve tissues that influence the function of a gland and it’s secretion of hormones. Not only does the hypothalamus secrete hormones into the bloodstream, but it regulates the release of hormones in the posterior pituitary gland. Those that are not made of nervous tissue once were. The adrenal medulla is derived from the same cells that produce certain ganglia. Chemically both the endocrine and nervous system function in communication by means of the same transmitters but use them in different ways. Hormones are utilized by both systems in signaling an example of this can be seen in the use of Norepinephrine. Norepinephrine functions as a neurotransmitter in the nervous system and as an adrenal hormone in the endocrine system.

Functionally the nervous and endocrine system work hand in hand acting in communicating and driving hormonal changes. They work in maintaining homeostasis and respond to changes inside and outside the body. Besides functioning in similar manners they work in conjunction. An example of this can be seen in a mother’s release of milk. When a baby sucks the nipple of its mother, sensory cells in the nipple sends signals to the hypothalamus, which then responds by releasing oxytocin from the posterior pituitary. The oxytocin is released into the bloodstream where it moves to its’ target cell, a mammary gland. The mammary gland then responds to the hormones signal by releasing milk through the nipple. Besides working in conjunction with each other, both systems affect one another.

The adrenal medulla is under control the control of nerve cells, but the nervous systems development is under the control of the endocrine system. Growth hormone (GH) is a peptide hormone produced by the anterior lobe of the pituitary gland in response to GH-releasing hormone from the hypothalamus. Release of growth hormone is inhibited by somatostatin, which also is produced by the hypothalamus. GH enhances the metabolism of fats for energy. It also enhances amino acid uptake and protein synthesis, which help in growth of cartilage and bone. Secretion of growth hormone is increased by exercise, stress, lowered blood glucose, and by insulin. There are many hormones that in one way or another effect attitude and behavior, but in the interest of time and space, this section will mostly discuss the gonadal, placenta, and thyroid hormones.

A variety of hormones are produced by the gonads and placenta. Estrogens, such as estradiol, function in the development and maintenance of the female reproductive tract, in the simulation of the mammary glands, in the development of secondary sex characteristics, and in the regulation of behavior. Androgens, such as testosterone, influence the development and maintenance of the male reproductive tract, secondary sex characteristics, and behavior. There has been a great deal of interest in the relationship between hormones and behavior and it has been found that the natural variation in the amount of hormones present is correlated with variation in behavior. For example, during the female menstrual period the "average" female shows a decreased body temperature, decrease in food and water intake, decrease in body weight, and she becomes sexually receptive. These variations within the body cause the females behavior to change. It's been found that it can result in changing of mood, performance in cognitive tasks, sensory sensitivity, and sexual activity. Unfortunately, due to the possible implications of gender issues this research is controversial. The same can happen with males. Research has shown that there is some suggestion of a relationship between androgens, like testosterone, and dominance-related behavior.

For example, men with high levels of testosterone are prone to be more competitive and have a higher level of aggression. Thyroid hormones can also influence a person's mood due to the changes in the thyroid's activity. Little is known about the mechanisms by which thyroid hormones elevate mood, but it has a connection to the neural functions in the brain, which have influence over hormone release. Many psychological disorder are directly related to certain impairments of brain functioning (chemical and hormonal imbalances), while others are more behaviorally orientated. Affective Disorders, for example, are those in which there is a disturbance of mood. One form of this disorder is depression which has been related to a number of hormones like melatonin and thyroid hormones.

Headaches, which can dramatically make a person irritable, snappy, and emotional can be another consequence of a hormone. During the female menstrual period, around ovulation time, estrogen rises to a peak. When estrogen is high a message goes out to produce a hormone called serotonin. This hormone makes the blood vessels in the brain narrow. This doesn't cause any pain, but when the estrogen, and hence serotonin, levels drop, blood vessels in the head begin to expand and put pressure on nerves. This causes the pain you feel when you have a headache.

Updated: Nov 30, 2023
Cite this page

Nervous and Endocrine Systems: Harmony in Homeostasis Regulation. (2016, Mar 15). Retrieved from https://studymoose.com/human-endocrine-system-essay

Nervous and Endocrine Systems: Harmony in Homeostasis Regulation essay
Live chat  with support 24/7

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment