Hazardous Substances and Hazardous Waste Essay

Custom Student Mr. Teacher ENG 1001-04 21 August 2016

Hazardous Substances and Hazardous Waste

1: Hazardous Substances and Hazardous Waste

Chemicals affect our everyday lives. They are used to produce almost everything we use, from paper and plastics to medicines and food to gasoline, steel, and electronic equipment. More than 70,000 chemicals are used regularly around the world. Some occur naturally in the earth or atmosphere, others are synthetic, or human-made. When we use and dispose of them properly, they may enhance our quality of life. But when we use or dispose of them improperly, they can have harmful effects on humans, plants, and animals.

What is hazardous waste?

Even when used properly, many chemicals can still harm human health and the environment. When these hazardous substances are thrown away, they become hazardous waste. Hazardous waste is most often a by-product of a manufacturing process – material left after products are made. Some hazardous wastes come from our homes: our garbage can include such hazardous wastes as old batteries, bug spray cans, and paint thinner. Regardless of the source, unless we dispose of hazardous waste properly, it can create health risks for people and damage the environment.

What kinds of hazardous waste are there?

Most hazardous waste is identified by one or more of its dangerous properties or characteristics: corrosive, ignitable, reactive, or toxic. Corrosive – A corrosive material can wear away (corrode) or destroy a substance. For example, most acids are corrosives that can eat through metal, burn skin on contact, and give off vapors that burn the eyes. Ignitable – An ignitable material can burst into flames easily. It poses a fire hazard; can irritate the skin, eyes, and lungs; and may give off harmful vapors. Gasoline, paint, and furniture polish are ignitable. Reactive – A reactive material can explode or create poisonous gas when combined with other chemicals. For example, chlorine bleach and ammonia are reactive and create a poisonous gas when they come into contact with each other. Toxic – Toxic materials or substances can poison people and other life. Toxic substances can cause illness and even death if swallowed or absorbed through the skin. Pesticides, weed killers, and many household cleaners are toxic.

Where does hazardous waste go?

Ideally, hazardous waste is reused or recycled. If this is not possible, hazardous waste is safely contained while it is stored, transported, and properly disposed of to prevent an accidental release into the environment. Advances in technology have greatly improved our ability to treat or dispose of hazardous waste in a way that prevents it from harming people or the environment. Typical methods of hazardous waste storage and disposal include surface impoundments (storing it in lined ponds), high temperature incineration (controlled burning), municipal and hazardous waste landfills (burying it in the ground), and deep well injection (pumping it into underground wells). More promising methods focus on minimizing waste, reusing and recycling chemicals, finding less hazardous alternatives, and using innovative treatment technologies.

What are the dangers of hazardous waste management?

Proper management and control can greatly reduce the dangers of hazardous waste. There are many rules for managing hazardous waste and preventing releases into the environment. Even so, a lot can go wrong when we try to contain hazardous waste. Even the most technologically advanced landfills we build will leak some day. Tanks used for storing petroleum products and other chemicals can leak and catch fire; underground storage tanks weaken over time and leak their hazardous contents. Transportation accidents, such as train crashes and overturned trucks, can occur while transporting hazardous substances. There are also cases of intentional and illegal dumping of hazardous waste in sewer systems, abandoned warehouses, or ditches in remote areas to avoid the costs and rules of safe disposal.

How can hazardous waste affect us?

When hazardous wastes are released in the air, water, or on the land they can spread, contaminating even more of the environment and posing greater threats to our health. For example, when rain falls on soil at a waste site, it can carry hazardous waste deeper into the ground and the underlying groundwater. If a very small amount of a hazardous substance is released, it may become diluted to the point where it will not cause injury. A hazardous substance can cause injury or death to a person, plant, or animal if:

A large amount is released at one time
A small amount is released many times at the same place
The substance does not become diluted
The substance is very toxic (for example, arsenic).
Coming into contact with a substance is called an exposure. The effects of exposure depend on: How the substance is used and disposed of
Who is exposed to it
The concentration, or dose, of exposure
How someone is exposed
How long or how often someone is exposed.

Humans, plants, and animals can be exposed to hazardous substances through inhalation, ingestion, or dermal exposure. Inhalation – we can breathe vapors from hazardous liquids or even from contaminated water while taking a shower. Ingestion – we can eat fish, fruits and vegetables, or meat that has been contaminated through exposure to hazardous substances. Also, small children often eat soil or household materials that may be contaminated, such as paint chips containing lead. Probably the most common type of exposure is drinking contaminated water. Dermal exposure – a substance can come into direct contact with and be absorbed by our skin. Exposures can be either acute or chronic. An acute exposure is a single exposure to a hazardous substance for a short time.

Health symptoms may appear immediately after exposure; for example, the death of a fly when covered with bug spray or a burn on your arm when exposed to a strong acid such as from a leaking battery. Chronic exposure occurs over a much longer period of time, usually with repeated exposures in smaller amounts. For example, people who lived near Love Canal, a leaking hazardous waste dump, did not notice the health effects of their chronic exposure for several years.

Chronic health effects are typically illnesses or injuries that take a long time to develop, such as cancer, liver failure, or slowed growth and development. One reason chronic exposure to even tiny amounts of hazardous substances can lead to harm is bioaccumulation. Some substances are absorbed and stay in our bodies rather than being excreted. They accumulate and cause harm over time. Solid Waste and Emergency Response Home | Superfund Home | Innovative Technologies Home Area Navigation

Test Your Knowledge
Classroom Activities
Health Information

Hazardous wastes are poisonous byproducts of manufacturing, farming, city septic systems, construction, automotive garages, laboratories, hospitals, and other industries. The waste may be liquid, solid, or sludge and contain chemicals, heavy metals, radiation, dangerous pathogens, or other toxins. Even households generate hazardous waste from items such as batteries, used computer equipment, and leftover paints or pesticides. The waste can harm humans, animals, and plants if they encounter these toxins buried in the ground, in stream runoff, in groundwater that supplies drinking water, or in floodwaters, as happened after Hurricane Katrina. Some toxins, such as mercury, persist in the environment and accumulate. Humans or animals often absorb them when they eat fish. The rules surrounding hazardous waste are overseen in the U.S. by the federal Environmental Protection Agency (EPA) as well as state departments of environmental protection.

EPA requires that hazardous waste be handled with special precautions and be disposed of in designated facilities located throughout the United States, which charge for their services. Many towns have special collection days for household hazardous waste. A common hazardous waste facility is one that stores the waste in sealed containers in the ground. Less toxic waste that is unlikely to migrate, like soil with lead, is sometimes allowed to remain in place under the ground and then be sealed with a cap of hard clay. Communities may eventually decide to use these sites for golf courses or parks, or to label them “brownfields” sites, suitable for commercial or industrial uses. Violations, like dumping hazardous waste in town dumps to avoid paying the fees charged by waste transporters and waste facilities, may result in hefty fines.

EPA began regulating hazardous waste in 1976. Many toxic waste dumps that pose a threat to communities today are holdovers from the era prior to 1976. Other waste sites are the result of more recent illegal dumping. The federal Resource Conservation and Recovery Act regulates how hazardous waste must be handled and stored. It also lists some but not all of the wastes that EPA considers hazardous. Substances that are not on the list but are toxic are also considered hazardous waste and subject to EPA’s rules. The Superfund Act contains rules about cleaning up hazardous waste that was dumped illegally.

Communities and environmentalists have long complained about lax enforcement of hazardous waste regulations, both by the federal government and state governments. Meanwhile, many corporations argue the regulations are too strict and lobby Congress to soften or remove certain rules. One EPA rule that has proved very controversial governs industrial sludge. EPA allows sludge containing heavy metals to be included in fertilizers that are used by farmers on food crops or sold directly to the public. Environmental and other organizations say dangerous levels of the metals are taken up by some plants and subsequently eaten by people, with particularly negative effects on children.

hazardous-waste management, the collection, treatment, and disposal of waste material that, when improperly handled, can cause substantial harm to human health and safety or to the environment. Hazardous wastes can take the form of solids, liquids, sludges, or contained gases, and they are generated primarily by chemical production, manufacturing, and other industrial activities. They may cause damage during inadequate storage, transportation, treatment, or disposal operations. Improper hazardous-waste storage or disposal frequently contaminates surface and groundwater supplies. People living in homes built near old and abandoned waste disposal sites may be in a particularly vulnerable position. In an effort to remedy existing problems and to prevent future harm from hazardous wastes, governments closely regulate the practice of hazardous-waste management. Hazardous-waste characteristics

Hazardous wastes are classified on the basis of their biological, chemical, and physical properties. These properties generate materials that are either toxic, reactive, ignitable, corrosive, infectious, or radioactive. Toxic wastes are poisons, even in very small or trace amounts. They may have acute effects, causing death or violent illness, or they may have chronic effects, slowly causing irreparable harm. Some are carcinogenic, causing cancer after
many years of exposure. Others are mutagenic, causing major biological changes in the offspring of exposed humans and wildlife. Reactive wastes are chemically unstable and react violently with air or water. They cause explosions or form toxic vapours. Ignitable wastes burn at relatively low temperatures and may cause an immediate fire hazard. Corrosive wastes include strong acidic or alkaline substances.

They destroy solid material and living tissue upon contact, by chemical reaction. Infectious wastes include used bandages, hypodermic needles, and other materials from hospitals or biological research facilities. Radioactive wastes emit ionizing energy that can harm living organisms. Because some radioactive materials can persist in the environment for many thousands of years before fully decaying, there is much concern over the control of these wastes. However, the handling and disposal of radioactive material is not a responsibility of local municipal government. Because of the scope and complexity of the problem, the management of radioactive waste—particularly nuclear fission waste—is usually considered an engineering task separate from other forms of hazardous-waste management and is discussed in the article nuclear reactor.

Transport of hazardous waste

Hazardous waste generated at a particular site often requires transport to an approved treatment, storage, or disposal facility (TSDF). Because of potential threats to public safety and the environment, transport is given special attention by governmental agencies. In addition to the occasional accidental spill, hazardous waste has, in the past, been intentionally spilled or abandoned at random locations in a practice known as “midnight dumping.” This practice has been greatly curtailed by the enactment of laws that require proper labeling, transport, and tracking of all hazardous wastes.

Transport vehicles

Hazardous waste is generally transported by truck over public highways. Only a very small amount is transported by rail, and almost none is moved by air or inland waterway. Highway shipment is the most common because road vehicles can gain access to most industrial sites and approved TSDFs. Railroad trains require expensive siding facilities and are suitable only for very large waste shipments. Hazardous wastes can be shipped in tank trucks made of steel or aluminum alloy, with capacities up to about 34,000 litres (9,000 gallons). They also can be containerized and shipped in 200-litre (55-gallon) drums. Specifications and standards for cargo tank trucks and shipping containers are included in governmental regulations.

The manifest system

In the United States a key feature of regulations pertaining to waste transport is the “cradle-to-grave” manifest system, which monitors the journey of hazardous waste from its point of origin to the point of final disposal. The manifest system helps to eliminate the problem of midnight dumping. It also provides a means for determining the type and quantity of hazardous waste being generated, as well as the recommended emergency procedures in case of an accidental spill. A manifest is a record-keeping document that must be prepared by the generator of the hazardous waste, such as a chemical manufacturer. The generator has primary responsibility for the ultimate disposal of the waste and must give the manifest, along with the waste itself, to a licensed waste transporter.

A copy of the manifest must be delivered by the transporter to the recipient of the waste at an authorized TSDF. Each time the waste changes hands, a copy of the manifest must be signed. Copies of the manifest are kept by each party involved, and additional copies are sent to appropriate environmental agencies. In the event of a leak or accidental spill of hazardous waste during its transport, the transporter must take immediate and appropriate actions, including notifying local authorities of the discharge. An area may have to be diked to contain the wastes, and efforts must be undertaken to remove the wastes and reduce environmental or public health hazards.

Treatment, storage, and disposal

Several options are available for hazardous-waste management. The most desirable is to reduce the quantity of waste at its source or to recycle the materials for some other productive use. Nevertheless, while reduction and recycling are desirable options, they are not regarded as the final remedy to the problem of hazardous-waste disposal. There will always be a need for treatment and for storage or disposal of some amount of hazardous waste.


Hazardous waste can be treated by chemical, thermal, biological, and physical methods. Chemical methods include ion exchange, precipitation, oxidation and reduction, and neutralization. Among thermal methods is high-temperature incineration, which not only can detoxify certain organic wastes but also can destroy them. Special types of thermal equipment are used for burning waste in either solid, liquid, or sludge form. These include the fluidized-bed incinerator, multiple-hearth furnace, rotary kiln, and liquid-injection incinerator. One problem posed by hazardous-waste incineration is the potential for air pollution. Biological treatment of certain organic wastes, such as those from the petroleum industry, is also an option. One method used to treat hazardous waste biologically is called landfarming.

In this technique the waste is carefully mixed with surface soil on a suitable tract of land. Microbes that can metabolize the waste may be added, along with nutrients. In some cases a genetically engineered species of bacteria is used. Food or forage crops are not grown on the same site. Microbes can also be used for stabilizing hazardous wastes on previously contaminated sites; in that case the process is called bioremediation. The chemical, thermal, and biological treatment methods outlined above change the molecular form of the waste material.

Physical treatment, on the other hand, concentrates, solidifies, or reduces the volume of the waste. Physical processes include evaporation, sedimentation, flotation, and filtration. Yet another process is solidification, which is achieved by encapsulating the waste in concrete, asphalt, or plastic. Encapsulation produces a solid mass of material that is resistant to leaching. Waste can also be mixed with lime, fly ash, and water to form a solid, cementlike product.

Surface storage and land disposal

Hazardous wastes that are not destroyed by incineration or other chemical processes need to be disposed of properly. For most such wastes, land disposal is the ultimate destination, although it is not an attractive practice, because of the inherent environmental risks involved. Two basic methods of land disposal include landfilling and underground injection. Prior to land disposal, surface storage or containment systems are often employed as a temporary method. Temporary on-site waste storage facilities include open waste piles and ponds or lagoons. New waste piles must be carefully constructed over an impervious base and must comply with regulatory requirements similar to those for landfills. The piles must be protected from wind dispersion or erosion. If leachate is generated, monitoring and control systems must be provided.

Only noncontainerized solid, nonflowing waste material can be stored in a new waste pile, and the material must be landfilled when the size of the pile becomes unmanageable. A common type of temporary storage impoundment for hazardous liquid waste is an open pit or holding pond, called a lagoon. New lagoons must be lined with impervious clay soils and flexible membrane liners in order to protect groundwater. Leachate collection systems must be installed between the liners, and groundwater monitoring wells are required.

Except for some sedimentation, evaporation of volatile organics, and possibly some surface aeration, open lagoons provide no treatment of the waste. Accumulated sludge must be removed periodically and subjected to further handling as a hazardous waste. Many older, unlined waste piles and lagoons are located above aquifers used for public water supply, thus posing significant risks to public health and environmental quality. A large number of these old sites have been identified and scheduled for cleanup, or remediation.

Secure landfills

Landfilling of hazardous solid or containerized waste is regulated more stringently than landfilling of municipal solid waste. Hazardous wastes must be deposited in so-called secure landfills, which provide at least 3 metres (10 feet) of separation between the bottom of the landfill and the underlying bedrock or groundwater table. A secure hazardous-waste landfill must have two impermeable liners and leachate collection systems. The double leachate collection system consists of a network of perforated pipes placed above each liner. The upper system prevents the accumulation of leachate trapped in the fill, and the lower serves as a backup. Collected leachate is pumped to a treatment plant. In order to reduce the amount of leachate in the fill and minimize the potential for environmental damage, an impermeable cap or cover is placed over a finished landfill.

A groundwater monitoring system that includes a series of deep wells drilled in and around the site is also required. The wells allow a routine program of sampling and testing to detect any leaks or groundwater contamination. If a leak does occur, the wells can be pumped to intercept the polluted water and bring it to the surface for treatment. One option for the disposal of liquid hazardous waste is deep-well injection, a procedure that involves pumping liquid waste through a steel casing into a porous layer of limestone or sandstone. High pressures are applied to force the liquid into the pores and fissures of the rock, where it is to be permanently stored. The injection zone must lie below a layer of impervious rock or clay, and it may extend more than 0.8 km (0.5 mile) below the surface. Deep-well injection is relatively inexpensive and requires little or no pretreatment of the waste, but it poses a danger of leaking hazardous waste and eventually polluting subsurface water supplies.

Remedial action

Disposal of hazardous waste in unlined pits, ponds, or lagoons poses a threat to human health and environmental quality. Many such uncontrolled disposal sites were used in the past and have been abandoned. Depending on a determination of the level of risk, it may be necessary to remediate those sites. In some cases, the risk may require emergency action. In other instances, engineering studies may be required to assess the situation thoroughly before remedial action is undertaken. One option for remediation is to completely remove all the waste material from the site and transport it to another location for treatment and proper disposal. This so-called off-site solution is usually the most expensive option. An alternative is on-site remediation, which reduces the production of leachate and lessens the chance of groundwater contamination.

On-site remediation may include temporary removal of the hazardous waste, construction of a secure landfill on the same site, and proper replacement of the waste. It may also include treatment of any contaminated soil or groundwater. Treated soil may be replaced on-site and treated groundwater returned to the aquifer by deep-well injection. A less costly alternative is full containment of the waste. This is done by placing an impermeable cover over the hazardous-waste site and by blocking the lateral flow of groundwater with subsurface cutoff walls. It is possible to use cutoff walls for this purpose when there is a natural layer of impervious soil or rock below the site.

The walls are constructed around the perimeter of the site, deep enough to penetrate to the impervious layer. They can be excavated as trenches around the site without moving or disturbing the waste material. The trenches are filled with a bentonite clay slurry to prevent their collapse during construction, and they are backfilled with a mixture of soil and cement that solidifies to form an impermeable barrier. Cutoff walls thus serve as vertical barriers to the flow of water, and the impervious layer serves as a barrier at the bottom.

Free Hazardous Substances and Hazardous Waste Essay Sample


  • Subject:

  • University/College: University of Arkansas System

  • Type of paper: Thesis/Dissertation Chapter

  • Date: 21 August 2016

  • Words:

  • Pages:

We will write a custom essay sample on Hazardous Substances and Hazardous Waste

for only $16.38 $12.9/page

your testimonials