Personal protective equipment


Risks exist in every work environment in various kinds: sharp edges, falling items, flying stimulates, chemicals, noise and a myriad of other possibly dangerous situations.

Controlling a threat at its source is the finest way to secure employees. Depending upon the threat or office conditions, the usage of engineering or work practice controls to manage or eliminate threats to the greatest level possible.

When work practice and administrative controls are not possible or do not supply enough security, employers need to supply individual protective equipment (PPE) to their staff members and guarantee its use.

Individual protective devices (PPE) describes protective clothing, helmets, goggles, or other garments or devices developed to secure the user's body from injury and other risks.

The Requirement for PPE
To make sure the best possible defense for employees in the office, the cooperative efforts of both companies and workers will help in establishing and maintaining a safe and healthful workplace. In basic, employers are accountable for: ■ Performing a "risk assessment" of the work environment to identify and manage physical and health dangers.

Get quality help now
checked Verified writer

Proficient in: Materials

star star star star 4.9 (247)

“ Rhizman is absolutely amazing at what he does . I highly recommend him if you need an assignment done ”

avatar avatar avatar
+84 relevant experts are online
Hire writer

■ Determining and providing appropriate PPE for employees. ■ Training staff members in the usage and care of the PPE.

Preserving PPE, consisting of changing worn or damaged PPE.
■ Occasionally reviewing, updating and evaluating the effectiveness of the PPE program.

Workers ought to:
■ Appropriately wear PPE,
■ Participate in training sessions on PPE,
■ Take care of, tidy and maintain PPE, and
■ Notify a supervisor of the need to repair or replace PPE.

The risk evaluation need to survey of the facility to develop a list of possible hazards in the following basic risk classifications: ■ Effect,
■ Penetration,
■ Compression (roll-over),.
■ Chemical,.
■ Heat/cold,.
■ Damaging dust,.
■ Light (optical) radiation, and.
■ Biologic.

In addition to noting the fundamental design of the facility and examining any history of occupational illnesses or injuries, things to try to find during the study include: ■ Sources of electricity.

■ Sources of motion such as machines or processes where movement may exist that could result in an impact between personnel and equipment. ■ Sources of high temperatures that could result in burns, eye injuries or fire.

■ Types of chemicals used in the workplace.
■ Sources of harmful dusts.
■ Sources of light radiation, such as welding, brazing, cutting, furnaces, heat treating, high intensity lights, etc. ■ The potential for falling or dropping objects.
■ Sharp objects that could poke, cut, stab or puncture.
■ Biologic hazards such as blood or other potentially infected material.

Some of the most common types of eye and face protection
include the following:
■ Safety spectacles. These protective eyeglasses have safety frames constructed of metal or plastic and impact-resistant lenses. Side shields are available on some models.

■ Goggles. These are tight-fitting eye protection that completely cover the eyes, eye sockets and the facial area immediately surrounding the eyes and provide protection from impact, dust and splashes. Some goggles will fit over corrective lenses.

■ Welding shields.

Constructed of vulcanized fiber or fiberglass and fitted with a filtered lens, welding shields protect eyes from burns caused by infrared or intense radiant light; they also protect both the eyes and face from flying sparks, metal spatter and slag chips produced during welding, brazing, soldering and cutting operations.

■ Laser safety goggles. These specialty goggles protect against intense concentrations of light produced by lasers. The type of laser safety goggles an employer chooses will depend upon the equipment and operating conditions in the workplace.

■ Face shields. These transparent sheets of plastic extend from the eyebrows to below the chin and across the entire width of the employee’s head.

There are many types of hard hats available in the marketplace today. In addition to selecting protective headgear that meets standard requirements, employers should ensure that employees wear hard hats that provide appropriate protection against potential workplace hazards. It is important for employers to understand all potential hazards when making this selection, including electrical hazards. This can be done through a comprehensive hazard analysis and an awareness of the different types of protective headgear available.

■ Class A hard hats provide impact and penetration resistance along with limited voltage protection (up to 2,200 volts).

■ Class B hard hats provide the highest level of protection against electrical hazards, with high-voltage shock and burn protection (up to 20,000 volts). They also provide protection from impact and penetration hazards by flying/falling objects.

■ Class C hard hats provide lightweight comfort and impact protection but offer no protection from electrical hazards.

■ Leggings protect the lower legs and feet from heat hazards such as molten metal or welding sparks. Safety snaps allow leggings to be removed quickly ■ Metatarsal guards protect the instep area from impact and compression. Made of aluminum, steel, fiber or plastic, these guards may be strapped to the outside of shoes.

■ Toe guards fit over the toes of regular shoes to protect the toes from impact and compression hazards. They may be made of steel, aluminum or plastic.

■ Combination foot and shin guards protect the lower legs and feet, and may be used in combination with toe guards when greater protection is needed. ■ Safety shoes have impact-resistant toes and heat-resistant soles that protect the feet against hot work surfaces common in roofing, paving and hot metal industries.

The metal insoles of some safety shoes protect against puncture wounds. Safety shoes may also be designed to be electrically conductive to prevent the buildup of static electricity in areas with the potential for explosive atmospheres or nonconductive to protect workers from workplace electrical hazards.

■ Leather gloves protect against sparks, moderate heat, blows, chips and rough objects.

■ Aluminized gloves provide reflective and insulating protection against heat and require an insert made of synthetic materials to protect against heat and cold.

■ Aramid fiber gloves protect against heat and cold, and abrasive-resistant.

■ Synthetic gloves of various materials offer protection against heat and cold, cut and abrasive-resistant and may withstand some diluted acids. These materials do not stand up against alkalis and solvents.

Protective clothing comes in a variety of materials, each effective against particular hazards, such as:

■ Paper-like fiber used for disposable suits provide protection against dust and splashes.

■ Treated wool and cotton adapts well to changing temperatures, is comfortable, and fire-resistant and protects against dust, abrasions and rough and irritating surfaces. ■ Duck is a closely woven cotton fabric that protects against cuts and bruises when handling heavy, sharp or rough materials

■ Leather is often used to protect against dry heat and flames. ■ Rubber, rubberized fabrics, neoprene and plastics protect against certain chemicals and physical hazards. When chemical or physical hazards are present, check with the clothing manufacturer to ensure that the material selected will provide protection against the specific hazard.

Some types of hearing protection include:
■ Single-use earplugs are made of waxed cotton, foam, silicone rubber or fiberglass wool. They are self-forming and, when properly inserted, they work as well as most molded earplugs.

■ Pre-formed or molded earplugs must be individually fitted by a professional and can be disposable or reusable. Reusable plugs should be cleaned after each use.

■ Earmuffs require a perfect seal around the ear. Glasses, facial hair, long hair or facial movements such as chewing may reduce the protective value of earmuffs.


Updated: Dec 12, 2023
Cite this page

Personal protective equipment. (2016, Apr 14). Retrieved from

Personal protective equipment essay
Live chat  with support 24/7

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment