24/7 writing help on your phone

Essay,
Pages 2 (348 words)

Views

422

As defined by different scholars and mathematicians, statistics refers to the science of developing conclusions and learning from data, calculating and making informed decisions about a phenomena and its behavior through the use of data from calculated assumptions such as mean, mode, standard deviation, variance, and probability among many others (Pestman & Alberink, 2008). The following calculations will adopt several of the statistics assumptions to calculate results and make conclusions about the behavior of the data.

2. What is the probability that:

- Z is greater than 1.57
- Z is less than 1.
84

- Z is between 1.57 and 1.84
- Z is less than or greater than 1.84

- Z-score = (data point –mean) / standard deviation.

(1.57 – 0) /s 1 = 1.57

Reading from the Z-scores table, = 0.9418

Probability that Z is greater than 1.57 = 94.18%

(0 -1.84)/ 1=- 1.84

From the Z- scores table =0.0329

Therefore Probability that Z is less than 1.84 = 3.29%

c)(94.18 – 3.29) %

The chances that Z is between 1.57 and 1.84 is = 90.89 %

d) (0.94.18 +0.0329) / 2

The probability that Z is less than 1.57 or greater than 1.84 = 0.4874

Probability = 68.79 %

In 2011 the per capita consumption of coffee in United States was reported to be 4.16 kg and 9.56 pounds (data extracted from www.ico.org). Assume that the per capita consumption of coffee in United States is approximately normally distributed with a mean of 9.152 pounds and a standard deviation of 4.16

- What is the probability that someone in United States consumed more than 10 pounds of coffee in 2011?
- What is the probability that someone in u United States consumed between 3 and 5 pounds of coffee in 2011?
- What is the probability that someone in United States consumed less than 5 pounds of coffee in 2011?

(9.152 – 10) /3 = -0.2837

- The Z- scores will be = .3897

Therefore the probability that someone in United States consumed more than 10 pounds of coffee in 2011 = 38.97 %

i. (3 -4.16) / 3 = 0.3867

= 0.3483

Probability = 34.83%

ii. (5 – 4.16) / 3

= 0.2800

Reading from the Z- scores table = 0.6103

Therefore the probability that a person in united states consumed between 3 and 5 pounds 2011 will be = 61.03 %

C) (5 – 4.16)/ 3 = 0.2800

= 0.6103

Probability that an individual in united states consumed less than 5 pounds in 2011 = 61.03 %

- Pestman, W. R., & Alberink, I. B. (2008). Problems and detailed solutions. Berlin: De Gruyter.

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment