Microelectronic Pill - Advanced Technology

About this essay
About this essay
How can I use this essay sample?
You can use the free samples as references, and sources, and for finding quotes, and citations. They can be helpful to learn about formatting, styles, and different types of essay structures. They're also a great source of inspiration!
Who wrote this sample and why are these essays free?
These samples are written by graduate students who have donated them to us and by our own expert writers. We only accept writing samples from experienced and qualified writers. The essays are free because we want to help all students, regardless of their financial situation. This is why we offer a mix of paid and free services and tools.
Is it plagiarism to use sample essays?
If you use the essay as a whole, then yes. These samples are only examples and someone else's work. You should paraphrase and cite everything you use from sample essays properly.


The invention of transistor made it possible for the very first use of radiometry capsules, which utilized simple circuits for the internal study of the gastro-intestinal (GI) tract. They could not be utilized as they might transfer only from a single channel and also due to the size of the components. They likewise suffered from bad reliability, low sensitivity and brief life times of the devices. This caused the application of single-channel telemetry pills for the detection of illness and irregularities in the GI tract where limited location prevented using standard endoscopy.

They were later on modified as they had the disadvantage of using laboratory type sensing units such as the glass pH electrodes, resistance thermometers, and so on

. They were also of extremely large size. The later modification is comparable to the above instrument but is smaller in size due to the application of existing semiconductor fabrication innovations. These technologies led to the development of “MICROELECTRONIC PILL”. Microelectronic tablet is generally a multichannel sensing unit used for remote biomedical measurements utilizing micro technology.

Get quality help now
checked Verified writer

Proficient in: Advanced Technology

star star star star 4.7 (657)

“ Really polite, and a great writer! Task done as described and better, responded to all my questions promptly too! ”

avatar avatar avatar
+84 relevant experts are online
Hire writer

This is utilized for the real-time measurement parameters such as temperature, pH, conductivity and liquified oxygen. The sensors are made using electron beam and photolithographic pattern integration and were controlled by an application particular integrated circuit (ASIC).


When Microelectronic tablet is swallowed, then it will take a trip through the Gastro Digestive Tract & & all at once perform multi criterion in situ physiological analysis After finishing its mission it will come out of the body by typical bowel movement The tablet is 16mm in size & & 55mm long weighing around 5 gram It tape-records parameters like temperature level, pH, Conductivity, & & Dissolved Oxygen in real time.

Get to Know The Price Estimate For Your Paper
Number of pages
Email Invalid email

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related email

"You must agree to out terms of services and privacy policy"
Write my paper

You won’t be charged yet!

It measures the body core temperature. Likewise compensates with the temperature caused signal changes in other sensors. It also recognizes local changes connected with TISSUE INFLAMMATION & & ULCERS.


ION-SELECTIVE FIELD EFFECT TRANSISTOR(ISFET) The ISFET measures pH. It can reveal pathological conditions associated with abnormal pH levels These abnormalities include : Pancreatic disease Hypertension Inflammatory bowel disease The activity of fermenting bacteria The level of acid excretion Reflux of oesophagus Effect of GI specific drugs on target organs. The pair of direct contact Gold electrodes measures conductivity, by measuring the contents of water & salt absorption, bile secretion & the breakdown of organic components into charged colloids etc. in the GI tract. Since the gold has best conductivity among all the elements, Therefore it gives true value of conductivity as measured.


The three electrode electrochemical cell detects the level of dissolved oxygen in solution.

It measures the oxygen gradient from the proximal to the distal GI Tract It investigates : Growth of aerobic or bacterial infection Formation of radicals causing cellular injury & pathophysiological conditions like inflammation & Gastric ulceration. It develops generation enzymes linked with amperometric biosensors. ASIC The ASIC (Application Specific Integrated Circuit) is the control unit that connects together other components of the micro system. It contains an analogue signal –conditioning module operating the sensors, 10-bit analogue to digital (ADC) & digital to analogue (DAC) converters, & digital data processing module The temperature circuitry bias the diode at constant current so that change in temperature reflects a corresponding change in in diode voltage.

The pH ISFET sensor is biased as a simple source at constant current with the source voltage changing with threshold voltage & pH. The conductivity circuit operates at D.C. It measures the resistance across the electrode pair as an inverse function of solution conductivity. An incorporated potentiostat circuit operates the O 2 sensor with a 10 bit DAC controlling the working electrode potential w.r.t the reference Analogue signals are sequenced through a multiplexer before being digitized by ADC. ASIC & sensors consume 5.3 mW power corresponding to 1.7 mA of current. CONTROL CHIP Size of transmitter = 8 ? 5 ? 3 mm Modulation Scheme = Frequency Shift Keying (FSK) Data Transfer Rate = 1 kbps Frequency = 40.01 MHz at 20 °C Bandwidth of the signal generated 10 KHz It consumes 6.8 mW power at 2.2 mA of current.



The electronic pill comprise a biocompatible capsule, which consists of a chemically resistant polyether-terketone (PEEK) coating, the four microfabricated sensors, the ASIC control chip and a discrete component radio transmitter (Fig. 1). The unit I powered by two SR44 Ag2O batteries (3.1 V), which provides an operating time of 35 hours at the rated power consumption of 15 mW. The sensors were fabricated on two separate 5×5 mm2 silicon chips located at the front end of the capsule. The temperature sensor is embedded in the substrate, whereas the conductivity sensor is directly exposed to the surroundings.

The pH and oxygen sensors were enclosed in two separate 8 nL electrolyte chambers containing a 0.1M KOH solution retained in a 0.2 % calcium alginate gel. The electrolyte maintains a stable potential of the integrated Ag/AgCl reference electrodes used by the two sensors. The oxygen and pH sensor are covered by a 12 ?m thick film of teflon and nafion respectively, and protected by a 15 ?m thick dialysis membrane of polycarbonate. The signals were conditioned by the ASIC and then transmitted to a local receiver (base station) at 40.01 MHz prior to data acquisition on a PC. The applied simplex communication link, based on a direct sequence spread spectrum communication system, can handle data from several pills at the same time.


It is used in the medical diagnosis of gestro-intestial tract disease.


The electronic pill will be further miniaturised for human ingestion by the incorporation of the transmitter on silicon and a reduction in power consumption by the implementation of a standby modus and serial bitstream data compression. The integration of radiation sensors and the application of indirect imaging technologies such as ultrasound and impedance tomography will improve the detection of tissue abnormalities and radiology treatment associated with cancer and chronic inflammation.


  1. www.wikipedia.com
  2. www.seminar-only.com
  3. Cane, C., I. Gracia, and A. Merlos, Microelectronics Journal.
Cite this page

Microelectronic Pill - Advanced Technology. (2016, Nov 17). Retrieved from http://studymoose.com/microelectronic-pill-advanced-technology-essay

Microelectronic Pill - Advanced Technology

👋 Hi! I’m your smart assistant Amy!

Don’t know where to start? Type your requirements and I’ll connect you to an academic expert within 3 minutes.

get help with your assignment