Diabetes Mellitus

Custom Student Mr. Teacher ENG 1001-04 23 November 2016

Diabetes Mellitus

Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose) levels that result from defects in insulin secretion, or its action, or both. Diabetes mellitus, commonly referred to as diabetes was first identified as a disease associated with “sweet urine,” and excessive muscle loss in the ancient world. Elevated levels of blood glucose (hyperglycemia) lead to spillage of glucose into the urine, hence the term sweet urine. Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas.

Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level. In patients with diabetes, the absence or insufficient production of insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime. Over time, diabetes can lead to blindness, kidney failure, and nerve damage. These types of damage are the result of damage to small vessels, referred to as microvascular disease.

Diabetes is also an important factor in accelerating the hardening and narrowing of the arteries (atherosclerosis), leading to strokes, coronary heart disease, and other large blood vessel diseases. This is referred to as macrovascular disease. Causes of Diabetes Insufficient production of insulin (either absolutely or relative to the body’s needs), production of defective insulin (which is uncommon), or the inability of cells to use insulin properly and efficiently leads to hyperglycemia and diabetes. This latter condition affects mostly the cells of muscle and fat tissues, and results in a condition known as insulin resistance.

This is the primary problem in type 2 diabetes. The absolute lack of insulin, usually secondary to a destructive process affecting the insulin-producing beta cells in the pancreas, is the main disorder in type 1 diabetes. In type 2 diabetes, there also is a steady decline of beta cells that adds to the process of elevated blood sugars. Essentially, if someone is resistant to insulin, the body can, to some degree, increase production of insulin and overcome the level of resistance. After time, if production decreases and insulin cannot be released as vigorously, hyperglycemia develops.

Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream.

In certain types of diabetes, the cells’ inability to utilize glucose gives rise to the ironic situation of “starvation in the midst of plenty”. The abundant, unutilized glucose is wastefully excreted in the urine. Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach. ) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises.

In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range.

As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body’s needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia). Acute complications of Diabetes 1. Severely elevated blood sugar levels due to an actual lack of insulin or a relative deficiency of insulin. 2. Abnormally low blood sugar levels due to too much insulin or other glucose-lowering medications. Types of Diabetes There are two major types of diabetes, called type 1 and type 2.

Type 1 diabetes was also formerly called insulin dependent diabetes mellitus (IDDM), or juvenile onset diabetes mellitus. Type 2 is called Non-Insulin Dependent Diabetes Mellitus (NIDDM) or Adult Onset Diabetes Mellitus (AODM). Diabetes Mellitus Type 1 In type 1 diabetes, the pancreas undergoes an autoimmune attack by the body itself, and is rendered incapable of making insulin. Abnormal antibodies have been found in the majority of patients with type 1 diabetes. Antibodies are proteins in the blood that are part of the body’s immune system.

The patient with type 1 diabetes must rely on insulin medication for survival. In autoimmune diseases, such as type 1 diabetes, the immune system mistakenly manufactures antibodies and inflammatory cells that are directed against and cause damage to patients’ own body tissues. In persons with type 1 diabetes, the beta cells of the pancreas, which are responsible for insulin production, are attacked by the misdirected immune system. It is believed that the tendency to develop abnormal antibodies in type 1 diabetes is, in part, genetically inherited, though the details are not fully understood.

Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.

At present, the American Diabetes Association does not recommend general screening of the population for type 1 diabetes, though screening of high risk individuals, such as those with a first degree relative (sibling or parent) with type 1 diabetes should be encouraged. Type 1 diabetes tends to occur in young, lean individuals, usually before 30 years of age, however, older patients do present with this form of diabetes on occasion. This subgroup is referred to as latent autoimmune diabetes in adults (LADA). LADA is a slow, progressive form of type 1 diabetes.

Of all the people with diabetes, only approximately 10% have type 1 diabetes and the remaining 90% have type 2 diabetes. (See Appendix, Diagram 1 for Pathopysiology of DM1 ) Acute symptoms of type 1 diabetes Insulin is vital to patients with type 1 diabetes – they cannot live with out a source of exogenous insulin. Without insulin, patients with type 1 diabetes develop severely elevated blood sugar levels. This leads to increased urine glucose, which in turn leads to excessive loss of fluid and electrolytes in the urine.

Lack of insulin also causes the inability to store fat and protein along with breakdown of existing fat and protein stores. This dysregulation, results in the process of ketosis and the release of ketones into the blood. Ketones turn the blood acidic, a condition called diabetic ketoacidosis (DKA). Symptoms of diabetic ketoacidosis include nausea, vomiting, and abdominal pain. Without prompt medical treatment, patients with diabetic ketoacidosis can rapidly go into shock, coma, and even death. Diabetic ketoacidosis can be caused by infections, stress, or trauma all which may increase insulin requirements.

In addition, missing doses of insulin is also an obvious risk factor for developing diabetic ketoacidosis. Urgent treatment of diabetic ketoacidosis involves the intravenous administration of fluid, electrolytes, and insulin, usually in a hospital intensive care unit. Dehydration can be very severe, and it is not unusual to need to replace 6-7 liters of fluid when a person presents in diabetic ketoacidosis. Antibiotics are given for infections. With treatment, abnormal blood sugar levels, ketone production, acidosis, and dehydration can be reversed rapidly, and patients can recover remarkably well.

Type 2 diabetes Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body’s needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).

Addition to the problems with an increase in insulin resistance, the release of insulin by the pancreas may also be defective and suboptimal. In fact, there is a known steady decline in beta cell production of insulin in type 2 diabetes that contributes to worsening glucose control. (This is a major factor for many patients with type 2 diabetes who ultimately require insulin therapy. ) Finally, the liver in these patients continues to produce glucose through a process called gluconeogenesis despite elevated glucose levels. The control of gluconeogenesis becomes compromised.

While it is said that type 2 diabetes occurs mostly in individuals over 30 years old and the incidence increases with age, we are seeing an alarming number patients with type 2 diabetes who are barely in their teen years. Most of these cases are a direct result of poor eating habits, higher body weight, and lack of exercise. While there is a strong genetic component to developing this form of diabetes, there are other risk factors – the most significant of which is obesity. There is a direct relationship between the degree of obesity and the risk of developing type 2 diabetes, and this holds true in children as well as adults.

It is estimated that the chance to develop diabetes doubles for every 20% increase over desirable body weight. Regarding age, data shows that for each decade after 40 years of age regardless of weight there is an increase in incidence of diabetes. The prevalence of diabetes in persons 65 years of age and older is around 27%. Type 2 diabetes is also more common in certain ethnic groups. Compared with a 7% prevalence in non-Hispanic Caucasians, the prevalence in Asian Americans is estimated to be 8%, in Hispanics 12%, in blacks around 13%, and in certain Native American communities 20% to 50%.

Finally, diabetes occurs much more frequently in women with a prior history. (See Appendix, Diagram 2 for Pathophysiology of DM2) Acute complications of type 2 diabetes In patients with type 2 diabetes, stress, infection, and medications (such as corticosteroids) can also lead to severely elevated blood sugar levels. Accompanied by dehydration, severe blood sugar elevation in patients with type 2 diabetes can lead to an increase in blood osmolality (hyperosmolar state). This condition can worsen and lead to coma (hyperosmolar coma). A hyperosmolar coma usually occurs in elderly patients with type 2 diabetes.

Like diabetic ketoacidosis, a hyperosmolar coma is a medical emergency. Immediate treatment with intravenous fluid and insulin is important in reversing the hyperosmolar state. Unlike patients with type 1 diabetes, patients with type 2 diabetes do not generally develop ketoacidosis solely on the basis of their diabetes. Since in general, type 2 diabetes occurs in an older population, concomitant medical conditions are more likely to be present, and these patients may actually be sicker overall. The complication and death rates from hyperosmolar coma is thus higher than in DKA.

Hypoglycemia means abnormally low blood sugar (glucose). In patients with diabetes, the most common cause of low blood sugar is excessive use of insulin or other glucose-lowering medications, to lower the blood sugar level in diabetic patients in the presence of a delayed or absent meal. When low blood sugar levels occur because of too much insulin, it is called an insulin reaction. Sometimes, low blood sugar can be the result of an insufficient caloric intake or sudden excessive physical exertion. Blood glucose is essential for the proper functioning of brain cells.


  • Subject:

  • University/College: University of Arkansas System

  • Type of paper: Thesis/Dissertation Chapter

  • Date: 23 November 2016

  • Words:

  • Pages:

We will write a custom essay sample on Diabetes Mellitus

for only $16.38 $12.9/page

your testimonials