Design Lab Essay

Custom Student Mr. Teacher ENG 1001-04 17 November 2017

Design Lab

Investigate the amount of energy given off from liquid fuel cells

Calorimeter is a device used to measure the heat of chemical reactions, physical changes and used to determine the amount of heat released or absorb during a chemical reaction. Fuel which is used every day as a source of energy cans combust giving of different amounts of energy. In this experiment the combustion of liquid candle will be used to find the change in temperature of 20 ml beaker of water at different times. Using this experiment, we can used the energy given of by the candle fuel to determine how other fuels used in everyday life gives off energy and how to improve these conditions.

Problem: how would change in time affect the temperature of water while heated by a liquid fuel?

Hypothesis: if the beaker of water burns for a long time, then the temperature would be greater from the original temperature than the beaker that burns for less amount of time.

Procedures:

Materials:

* Goggles

* Apron

* Beakers

* Water

* Flame (candle)

* Stopwatch

* Pencil

* Paper

* Ring stands

* Lighter

* Thermometer

* Graduated Cylinder

* Wire Gauze

Procedure

1. Collected all necessary materials

2. Put on your apron and goggles

3. Set up the beaker in the ring stand on top of the wire gauze

4. Measure about 20 ml of water with the graduated cylinder and place on top of the wire gauze in the ring stand.

5. Using the thermometer measure the temperature of the water and record it under control group.

6. Place the liquid fuel under the beaker and carefully light the candle

7. Using the stopwatch, start the time for one minute and blow out the candle after the minute has passed.

8. After you have blown out the candle, record the new temperature of the water.

9. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one.

10. Then repeat the steps 4-9 two more times for the control group.

11. After doing 3 trials for the control, then Measure about 20 ml of water with the graduated cylinder

12. measure the temperature of the water and record it under 2 minute trial

13. Place the liquid fuel under the beaker and carefully light the candle

14. Using the stopwatch, start the time for 2 minutes and blow out the candle after 2 minutes has passed

15. After you have blown out the candle, record the new temperature of the water.

16. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one.

17. Then repeat the steps 12-16 two more times for the 2 minute trial.

18. After doing 2 minute trial, then Measure about 20 ml of water with the graduated cylinder for 3 minute trial.

19. measure the temperature of the water and record it under 3 minute trial

20. Place the liquid fuel under the beaker and carefully light the candle

21. Using the stopwatch, start the time for 3 minutes and blow out the candle after 3 minutes has passed

22. After you have blown out the candle, record the new temperature of the water under the 3 minutes trial.

23. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one.

24. Then repeat the steps 18-23 two more times for the 3 minute trial.

25. After doing 3 minute trial, then Measure about 20 ml of water with the graduated cylinder for 4 minute trial.

26. measure the temperature of the water and record it under 4 minute trial

27. Place the liquid fuel under the beaker and carefully light the candle

28. Using the stopwatch, start the time for 4 minutes and blow out the candle after 4 minutes has passed

29. After you have blown out the candle, record the new temperature of the water under the 4 minutes trial.

30. Wash the beaker completely in the same type of water that was used to fill the beaker for the first one.

31. Then repeat the steps 25-30 two more times for the 4 minute trial.

32. Once all data has been collected, then analyze your date and write the conclusion.

Data

Uncertainty

Equipment

Uncertainty

Beaker

� 0.01 ml

Thermometer

� 0.01 �C

Stopwatch

� 0.01 seconds

Graduated Cylinder

� 0.01 ml

Control-1 minute

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

2 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

3 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

4 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

Q = mc?T

Q

Mass

Change in Temp

C

4.18 J/G �C

Processed Data

Uncertainty

Equipment

Uncertainty

Beaker

� 0.01 ml

Thermometer

� 0.01 �C

Stopwatch

� 0.01 seconds

Graduated Cylinder

� 0.01 ml

Control-1 minute

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22.45 � 0.01 �C

31.30 � 0.01 �C

9 � 0.02 �C

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22.40 � 0.01 �C

30.65 � 0.01 �C

8 � 0.02 �C

2 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22.95 � 0.01 �C

40.40 � 0.01 �C

18 � 0.02 �C

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

3 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22.60 � 0.01 �C

50.75 � 0.01 �C

28 � 0.02 �C

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22.80 � 0.01 �C

50.20 � 0.01 �C

28 � 0.02 �C

4 min Trial

Trial 1

Amount of water

Initial Temp

Final Temp

Change in Temp

20 � 0.01 ml

22 .60� 0.01 �C

56.15 � 0.01 �C

34 � 0.02 �C

Trial 2

Amount of water

Initial Temp

Final Temp

Change in Temp

Trial 3

Amount of water

Initial Temp

Final Temp

Change in Temp

Q = mc?T

Q

Mass

Change in Temp

C

4.18 J/G �C

Uncertainties of data

ml of water

0.01ml /20.00 ml � 100 %

0.05%

Beaker

0.01ml /20.00 ml � 100 %

0.05%

Time

0.01 min /1 min � 100 %

1.0%

Independent Variables

Independent Variable 1 (1 minute)

0.01 min /1 min � 100 %

1.0%

Independent Variable 2 (2 minutes)

0.01 min /2 min � 100 %

0.5%

Independent Variable 3 (3 minutes)

0.01 min /3 min � 100 %

0.33%

Independent Variable 4 (4 minutes)

0.01 min /4 min � 100 %

0.25%

Initial Temperatures

Control-1 minute

T1. Temperature

(22.50)

0.01 �C /22.50 �C � 100 %

0.04%

T2. Temperature

(22.45)

0.01 �C /22.45 �C � 100 %

0.04%

T3. Temperature

(22.40)

0.01 �C /22.40 �C � 100 %

0.04%

2 Minute Trial

T1. Temperature

(22.95)

0.01 �C /22.95 �C � 100 %

0.04%

T2. Temperature

(22.40)

0.01 �C /22.40 �C � 100 %

0.04%

T3. Temperature

(22.40)

0.01 �C /22.40 �C � 100 %

0.04%

3 Minute Trial

T1. Temperature

(22.60)

0.01 �C /22.60 �C � 100 %

0.04%

T2. Temperature

(22.75)

0.01 �C /22.75 �C � 100 %

0.04%

T3. Temperature

(22.80)

0.01 �C /22.80 �C � 100 %

0.04%

4 Minute Trial

T1. Temperature

(22.60)

0.01 �C /22.60 �C � 100 %

0.04%

T2. Temperature

(22.75)

0.01 �C /22.75 �C � 100 %

0.04%

T3. Temperature

(22.25)

0.01 �C /22.15 �C � 100 %

0.04%

Final Temperature

Control

T1. Temperature

(30.00)

0.01 �C /30.00 �C � 100 %

0.03%

T2. Temperature

(31.30)

0.01 �C /31.30 �C � 100 %

0.03%

T3. Temperature

(30.65)

0.01 �C /30.65 �C � 100 %

0.03%

2 Minute Trial

T1. Temperature

(40.40)

0.01 �C /40.40 �C � 100 %

0.02%

T2. Temperature

(41.70)

0.01 �C /41.70 �C � 100 %

0.02%

T3. Temperature

(40.55)

0.01 �C /40.55 �C � 100 %

0.02%

3 Minute Trial

T1. Temperature

(50.75)

0.01 �C /50.75 �C � 100 %

0.02%

T2. Temperature

(50.35)

0.01 �C /50.35 �C � 100 %

0.02%

T3. Temperature

(50.20)

0.01 �C /50.20 �C � 100 %

0.02%

4 Minute Trial

T1. Temperature

(56.15)

0.01 �C /56.15 �C � 100 %

0.04%

T2. Temperature

(55.90)

0.01 �C /56.15 �C � 100 %

0.04%

T3. Temperature

(56.20)

0.01 �C /56.15 �C � 100 %

0.04%

Q = mc?T of control

Q = 4.18 J/G �C � (0.048g) � change in Temperature

Q= 20.00 ml (1L/1000ml)(1mol/22.4)(18.08/1 mol) = 0.0161 g

Conclusion

In this experiment it was proven that when certain about of water are left for a certain time over a flame it would change in temperature. The longer the water is over the flame, the temperature increased which proved the hypothesis to be correct. This experiment proved that the more time water is heated, the higher the temperature would be. If this experiment was to be conducted the next time, there would be a lot of changes. First the control would be in the temperature of water without any heated added to it. Then the time it was to be heated would be longer than one minute different in each different trial. More trials of the same time would be conducted to make sure that the experiment would be performed correctly.

Free Design Lab Essay Sample

A

  • Subject:

  • University/College: University of Arkansas System

  • Type of paper: Thesis/Dissertation Chapter

  • Date: 17 November 2017

  • Words:

  • Pages:

Let us write you a custom essay sample on Design Lab

for only $16.38 $13.9/page

your testimonials