Chapter III: Aerodynamic Modulation - Purpose of Determining Factors

Chapter III Aerodynamic Modulation3.1 IntroductionThe purpose of this chapter is to determine the mathematical model of the Storm by incorporate the physical and aerodynamic lows in to its mathematical equivalent model so that mathematical laws can be applied to analyse the behaviour and responses of the Storm. In the second order, this model will be define using DATCOM file. 3.2 Aerodynamic forces During the flight, there are four forces that are applied on every aircraft as it is seen in figure 33. This forces are taken about the aircraft’s centre of mass.

Drag D: due to theair resistance. The air molecules move around the aircraft as it moves through the atmosphere. The molecules that cling to the surface of the aircraft create skin friction. The natural texture of the surface of the aircraft is aerodynamically rough and is specified using the Roughness Height Rating (RHR). The RHR is the arithmetic mean of the surface variation in millionths of a millimetre.D= 1/2 .A..v2.CdWhere:D: Drag (N)A: Area (m2): Air density (Kg.m-3)v: velocity (m.s-1)Cd: Drag coefficient The Lift: This force is created by both Bernoulli Lift and Vortex Lift.It is the forces that opposes to the weight force. Its magnitude depends on several factors such as the shape and it is always directed perpendicular to the flight direction. Aero-dynamic coefficients are non-dimensional numbers that are used to determine the aerodynamic characteristics of an aircraft. We will L= 1/2. A..v2.CLWhere;CL: Lift coefficient Weight: Weight is a force that refers basically to all the mass of the airplane and it is always directed towards the centre of the earth.

Get to Know The Price Estimate For Your Paper
Topic
Number of pages
Email Invalid email